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We consider a representation of  the entropy production for a completely positive,  
trace-preserving dynamical semigroup satisfying detailed balance with respect to 
its faithful stationary state defined on a W*-algebra ~ (W) :  it is expressed as a 
positive Hermitian form on ~(W),  which is analogous to the quantum correlation 
functions used in the Kubo theory. By considering this Hermitian form as a 
variation function of  a vector in ~ (W) ,  an exact characterization of  the stationary 
states of  semigroups in a certain class is obtained. On this basis, the problem of 
characterizing the stationary states discussed by Spohn and Lebowitz for many- 
reservoir open systems is solved without the restriction to situations near thermal 
equilibrium. 

KEY WORDS: Quantum dynamical semigroups; detailed balance; entropy 
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1. I N T R O D U C T I O N  

Spohn introduced the notion of entropy production into quantum dynamical 
semigroups, tl) and by using its positive and convex properties attempted to 
characterize the stationary state of the semigroup (2,a) in analogy to the 
thermodynamic principle of minimal entropy production--a revised problem 
of what Lebowitz considered many years ago for the model of open systems 
weakly in contact with several thermal reservoirs. (2,4) Spohn's result is limited 
to the linear theory of irreversible processes: he takes into account linear 
terms in the expansion of the entropy production in the temperature dif- 
ferences, t2'3) This paper aims to obtain a rigorous result on the characteriza- 
tion by a variational principle which is not restricted to the linear version. 
The variational principle here is of a different type from that of Spohn, but 
our result is in line with the existing thermodynamic argument that stationary 
states are determined by the principle of minimal entropy production. 
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For the sake of simplicity, we confine ourselves to a finite quantum 
system, viz. a W*-algebra ~(~g) with dim Jog < oo (so-called N-level 
system(5'8)), on which a one-parameter family of identity-preserving, com- 
pletely positive maps {At; 0 ~ t < oo} (a dynamical semigroup) is defined. 
Let its infinitesimal generator L be of the form 

L = ~ L~ (1) 
k = l  

where each L k is assumed (without loss of generality) to be a dissipative 
generator on N(ocg) satisfying the condition of  detailed balance (5) with respect 
to a faithful state ~o k. Further, assume that A, commutes with the modular 
automorphism of % for all k = 1 ..... r. By an argument in Ref. 6, it follows 
then that there exists a state (in the commutant {col ..... %}' of all ~Ok) station- 
ary under the dynamical semigroup {At}. Our main result is a variational 
characterization of such a stationary state. Namely, a faithful state co in 
{col ..... %}' is stationary under A, if and only if co satisfies 

log co = X'min((D ) 

Xm~=(co) a vector in .~(-_gg) such that (2) 

min a(e), X) = a(co, Xmi,(co)) 

[The commutativity of faithful states is defined in terms of that of their 
modular automorl~hisms. Ns(jF) denotes the subspace of all self-adjoint 
elements.] The function a(co, X) is constructed by using a special structure 
(1) of L: 

a(p, JO = ~ qk(P; X -  log co k, X -  log cok) (3) 
k = l  

where qk(P ; X, Y) is a positive Hermitian form on N'(J(() such that qk(P; X, X) 
at X = log p - log co k, p ~ {~ok}', coincides with the entropy production (cf. 
Ref. 1) 

a(p[cok) = Tr p Lk(1Og to k -- log p) (4) 

More explicitly, 

'fo qk(P; X, Y) = ~ ~. {((pO~kl)o[v~), X](pco k ")~-o, IVY), Y])o~ 
'v 

+ ((P~k x]~ Y*](pCOk 1)1-0, r--(ki , L - ~ ,  L v ~ ,  X*])~k} dO (5) 
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where { V~ 3} are quantities appearing in Alicki's decomposition of L k (Ref. 7; 
see also Ref. 5): 

1 S~ zrTz(k), v(k) v~k)*[X, v(k)] (6) 

(The index v represents a pair of  indices i, j each denoting a CON in ~ . )  
The above characterization is stated with proof  in Section 4 as two main 

theorems. Sections 2 and 3 are preparation for the proof. The problem of 
characterizing the stationary state of the Lebowitz model can be solved as a 
corollary of the theorems, which is discussed in Section 5. We note that, 
though the variational principle in (2) is somewhat different from the most 
conventional form, the minimal value a(c,, log 6o) coincides with the total 
entropy production defined in Refs. 2 and 3, which guarantees the original 
thermodynamic argument of Bergmann and Lebowitz. (4) In fact, a later 
development of Prigogine's thermodynamics contains a proposal of varia- 
tion (14) to which the present scheme (2) conforms. It is based on the thermo- 
dynamic stability, which we formulate explicitly in Section 6 by using a convex 
function considered by Lieb. (lz) 

It has been argued in Refs. 5 and 6 that the remarkable property of 
detailed balance in the quantum version stems from the nature of ideal 
thermal reservoirs, viz. the reservoir satisfying the KMS condition. Therefore, 
the present result holds also when all the reservoirs in the Lebowitz model 
are of this ideal nature. The best physical example of  such a model with the 
reservoir temperatures far from each other can be seen in the steadily 
oscillating state of a laser, which we have discussed elsewhere.(17,18,~ 9) 

2. C O N D I T I O N  OF DETAILED BALANCE FOR THE 
GENERATOR OF A D Y N A M I C A L  S E M I G R O U P  

The work of Gorini et  aL (8) (see also Refs. 5 and 6) and that of  Lindblad (9) 
have established the most general form of  the generator L of {A,; 0 ~< t < oo} 
(a completely positive, identity-preserving dynamical semigroup which is 
norm continuous) acting on X ~ ~(Yt ~) and its predual generator L ,  of {A~,} 
(same as above except with "identity-preserving" replaced by !'trace-preserv- 
ing") on p e ~-+ (Yt~), where ~(Yt ~ is the W*-algebra of all bounded operators 
on a separable Hilbert space Y{~ and J +  (Jeg) is its trace class of positive, self- 
adjoint elements in ~(Yg') : in case of dim Yt ~ < oo they are given by 

(7) 
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and 

12 L , p  = - i [ g ,  p] + 2 , ([V,, pV~*] + [Vvp, Vv*]) (8) 

respectively, where H ( =  H*), V~ ~ ~ ( ; r  and the summation runs over a finite 
set of indices v (throughout the paper, we have only finite summations). The 
operator _+ i [H,  .] is called the Hamiltonian part, and L - i [H,  .] (or L ,  + 
i[H,  -]) the dissipative part, of  L (or L,) ,  denoted by L (h) and L (d) (L~) 
and r.(d)~ respectively. 

Let us assume that the semigroup under consideration satisfies detailed 
balance, that is: 

(i) There exists a faithful state co satisfying [H, co] = 0 and /,,co = 0 
(equivalent to L~)co = (a) L ,  co = 0). 

(ii) L commutes with the modular automorphism group {2J} (Zo ~ = 
coit.co-lt): L32ot = E J L  for - oo < t < oo, which, due to L,(h)co = 0, reduces 
t o  L(d)x~o t ----- E J L  (d) and r(d)Y t = E ,l(d) 

D e f i n i t i o n .  The dynamical semigroup with its generator (or the 
generator itself) satisfying (i) and (ii) is said to satisfy detailed balance with 
respect to (wrt) the faithful state co. 

Remark .  This definition of details balance follows that of Ref. 5 except 
that the normality of the generator (L(h)L (d) = L(d)L (h)) is not assumed here. 

The commutativity between L and the modular automorphism group is 
equivalent to that between L and the single automorphism (I),o defined by 

(I),oX - coXco- x, X ~ ~(Yg) (9) 

Alicki (7) showed that under detailed balance the decomposition of the dissi- 
pative part L (d) in (7) [L(, a) in (8)] in terms of { V~} can be made to satisfy 

�9 ~V~* = c~V~*, ~,oV~ = c?~V~, c~ r 0 (10) 

i.e., V~* and V~ are eigenvectors of the automorphism q)~ (his condition of 
nondegeneracy of the spectrum of  co is unnecessary(5)). Hence we assume (1 0) 
hereafter. 

Motivated by the above, we recapitulate detailed balance in the following 
form: 

Proposit ion 1. The predual generator L ,  satisfies detailed balance 
wrt a faithful state co iff: 

(i') l(a) E~ ,(d) where 

L(a),, = ~([Vv, pV**] + c~[V~*, p V d )  + Herin. adj. 

= 21([Vv, J~(p)] + [V~, Jv(P)]*) 
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in which 

J~(p) = pV** - c~V~*p, c~ > 0; c~ = 1 iff V** = V, 

(ii') [H, o~] = 0 and J~(co) = 0 (hence rcd) . . . .  0) for all v. 
If these conditions are fulfilled, the generator can be expressed in the 

form 

1 
L , p  = - iEH,  p] + ~ ,  {[V~, og[go-~p, V,*]] + [V~*, [p~o -1, V~]og]} (11) 

v 

Proof. First suppose that L ,  satisfies the condition of detailed balance 
formulated as in (i) and (ii). By Alicki's result, ~7~ reformulated in a stronger 
form by Kossakowski et al. (see the remark at the end of Section 2 of Ref. 5), 
L ,  has the form given by the first equality of (i') and (ii') is satisfied. The 
second equality of (i') is a straightforward identity. 

Conversely, assume (i') and (ii'). From (ii') and the second form oz~ ~*'~d) 
in (i'), (i) follows immediately. From J~(r~) = 0, it follows that dPo, V~* = c, V~*, 
qb~o V~ = c~- 1 V~ and hence, by the first form of t {d) in (i'), L~)~,o = ~b L (d) - - a )  ~ ' 

This implies (ii). Finally, (11) is obtained by substituting 

J~(p) = p C *  - ( ~ V ~ ) p  = ~[~o- lp ,  v~*] 

into the second expression for ,~,pr(J) in (i'). QED 

Remark. Another useful representation of detailed balance concerning 
the dissipative parts L (d) and t (a) is expressed as 

(d) - 1 1 (d)  L,  (X~o)r = co- L ,  (coX) = L(d )x ,  X ~ ~ ( ~ )  (12) 

as verified by using (10): the two equalities in (12) and [H, co] = 0 are equiva- 
lent to detailed balance (i) and (ii), where the first equality is equivalent to 

(d)  / ( d )  [ ( d ) y ~  t _____ L.  (I)~ = ~ _ .  (and hence E l L  d) and the second to the fact that ~ *  - - r  

L (d) is Hermitian in the Hilbert space ~o,(A~), a characteristic of L (d) as the 
dissipative part. (5,7) 

3. E N T R O P Y  P R O D U C T I O N  U N D E R  THE 
C O N D I T I O N  OF DETAILED B A L A N C E  

Lindblad(lO) proved a general inequality associated with relative entropy 
S(plco) defined for any two elements p, co e J-+ (A, ~) in ~ (W)  (and hence for any 
two normal states p, ~o): S(AplAco) ~< S(plog), where A is any completely 
positive,,trace-preserving map, Y-+ (A, ~ --* Y+ (W). Thus for the trace-preserv- 
ing, completely positive dynamical semigroup with a faithful stationary state 
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co considered in Section 2 

Tr A,,p[log(A,,p) - log co] ~< Tr p(log p - log co) (13) 

A formal differentiation with respect to t at t = 0 of both sides of (13) suggests 
that we write 

a(p[co) - - T r  pL(log p - tog co) (14) 

_- _ [ d  S(At.p]co) 1 ~>0 (15) 
U _ I t = 0  

and that we call the quantity a(plc-) the entropy production associated with 
the (normal) state p relative to the (faithful, normal) state co. 

Spohn (3) has shown a rigorous differentiation procedure in the above, 
assuming an extra condition for p and co that there exist two positive constants 
~1 and g2 such that ~lco < P < g2co is satisfied. This is certainly valid for finite 
systems [ ~ ( ~ )  with dim ~ < ~ ]  provided both states p and co are faithful. 
Accordingly, one has (i) a(colco) = 0, (ii) a(plco) is convex with respect to p, 
and (iii) a(plco) ~ 0 provided co is stationary, i.e., L.c ,  = 0. [A simple proof of 
fii) and (iii) on the basis of a theorem of Lieb (11) has been provided by 
Spohn.(1)] Here, with the additional assumption of detailed balance, we show 
a more explicit and tractable representation of the a(plco) in the quantum 
correlation (or, relaxation) functions (a concept first introduced in the Kubo 
theory(12)). 

Proposition 2. Let ~,o(~ '~) be the Hilbert space of the algebra ~ ( ~ )  
where a scalar product of X and Y 6 ~ ( ~ )  is defined in terms of a faithful 
state co by 

(X, Y),o = Tr coX* Y (16) 

If a completely positive, trace-preserving dynamical semigroup defined on 
~(J4 ~ satisfies detailed balance wrt the state co, then the entropy production 
a(plco) associated with a-state p ~ {co}' is given by 

fo a(plco) = ~ <(pco- 1)~ log pc.- 1](pco- 1)1 -o, IVy, log pco- 1])o, dO 
v 

(17) 

A deduction of this expression can be seen in the following series of lemmas. 

I . emma  1. Lindblad's dissipation function (9) is defined by 
D(L; X, Y) =- L(X* Y) - (LX*) Y -  X*(L I1). If the generator L is represented 
as in (7), then 

D(L; X, Y) = D(L(a); X, Y) = ~" [V~*, X*][Y, V~] (18) 
v 
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Lemma 2. In the Hilbert space ~o , (~ )  the dissipative part of L, L (d), is 
a Hermitian operator under detailed balance wrt co for which 

(X,  L(d)Y),o = (L(d)X, Y),o = - �89  Tr ooD(L; X, Y) 

_ 1 2  2 ~ {<[v~, x ] ,  IVy, r ]>~ + c~<[v~*, x ] ,  IVy*, r]>~} 

(19) 

Here the summation over v in (18) is rearranged such that the two terms 
IVy*, X*][Y, V~] and c~[Vv, X*][Y, V~*] are combined into a single term in 
accordance with Proposition 1. 

Remark. Alicki {7) showed that the Hilbert space adjoint L + of a linear 
(bounded) operator L with respect to scalar product (16) in ~ ,o (~ )  
( (L+X,  Y)~ = (X, LY),o) is related to the predual L ,  in ~(g/~)through 
L + X =  L,(Xco)o.) -1 if (LX)* = LX* is satisfied [this is true for L given in 
(7) and for L ,  in (8)1. Therefore, the condition of detailed balance 
represented in (12) for the dissipative part L (d~ is equivalent to 

( L ( d ) + X )  * = L ( d ) + ) (  -* = L(d)x *, Xm ~(Ag) (12') 

k o m r n a  3. The intertwining formula between a V m ~ ( ~ )  and an 
invertible p ~ 3 - + ( ~ )  is given by 

[V, p] = p~-~ log p]pO dO (20) 

= pO[ V, log p]pl -o dO (20') 

Formula (20) is the integration with respect to O, 0 ~< 0 ~ 1, of the identity 

d 
dO (pl-OVpO) = p l - O [ v  ' log p]pO 

be obtained by a change of the variable of  integration, and (20') can 
0---} 1 - 0. 

On the basis of the above, one proceeds to calculate the entropy produc- 
tion a(pleo), noting that the Hamiltonian part does not contribute to a(ppco) 
([p, log p] = 0 and [H, col = 0): 

cr(plco ) = - T r  pL~d)(log p -- log co) = - -Tr  coco- lpL~d)(log p -- log co) 

=1_ Z 2 v {(IVy, pco-1], Ivy, logp - log co])o~ 

+ cZ[V~*, pco- 1], IVy*, log p - log co])~} 
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by taking into account the second term c~<[V~*, X], [V~*, Y]>o associated 
with the term <[V~, X], IVy, Y]>,o in the sum (19). Note that 

cv[Vv, ' p c o - 1 1  = [ - ( I ) V v ,  ' ( i ) c o c o - l p l  = ( i ) o , [ V v ,  ' co-lp]  

= (r v J )*  = (co-,[pco-1, vJco)* 
by virtue of which 

1 
~(Plco) = ~ ~ {<[Vv, pco- 1], [Vv, log p - log co]>o 

+ <IV,, log p - log co], [V~, pco- 1]>o) } (21) 

Assume that p e {co}', so that [p, co] = 0, and that p is faithful. The inter- 
twining formulas (20) and (20') then yield 

<[V,, pco- a], IV,, log p - log co]>~ j.1 
= <(pco-1)~ log pco-1](0co-t)1-0, [V~, log pco-l]>o, dO 

0 

<[v~, log p - log co], I-v~, pco-1]>~ j.1 
= <[V~, log pco-1], (pco-x)o[v~, log pco-1](pco-1)1-0>~ dO 

0 

= <(pco-1)~ log pco-1](pco-1)1-0, [V~, log pco-1]>~o dO 
0 

showing that both expressions are identical. Hence the expression (17) 
follows. 

In the above connection we summarize the property of a sesquilinear 
form of X and Y defined for a fixed faithful state p e {co}' by 

l f o  q(p; X, Y) =- ~ {<(pco-1)~ X](pco-1) '-~ [V~, r]) ,o 

+ <(pco-1)O[v,, y,](pco-1)t-o, [V~, X*]>~} dO (22) 

[ . e m m a  4. Let q(p; X, Y) be a sesquilinear form N ( ~ )  x .~(Yt ~) I~ C 
given in (22). Then it is Hermitian and positive. It is symmetric for the 
subspace of all self-adjoint elements M'(Jg) = {X e N(Jg); X = X*} : 

(i) q(p; Y, X) = q(p; X, Y), X, Y e N(~f~) 
(ii) q(p; Y, X) = q(p; X, Y), X, Y e YY'(Ng) 

(iii) q(p; X, X) >~ 0 X e J)(~)  
The entropy production a(plco) under detailed balance (17) is given by 

~(p[co) = q(p; X -  log co, X -  log co)x=log p (23) 
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Remark. The symmetry (ii) stems from the presence of  the second term 
associated with the first in the integrand in (22) due to detailed balance, and 
is independent of  (i). Both symmetries are combined to conclude that 
q(p; X, Y) is real for any real elements X and I1. 

4. C H A R A C T E R I Z A T I O N  OF THE S T A T I O N A R Y  STATE OF A 
D Y N A M I C A L  S E M I G R O U P  IN A WIDER CLASS 

T h e o r e m  1. Let L be the generator of  a completely positive, identity- 
preserving dynamical semigroup defined on ~ ( ~ ) ,  dim ~ < ~ ,  decomposed 

r into a sum L = ~ k = l  L k such that each Lk ,  with vanishing Hamil- 
tonian part, satisfies detailed balance wrt a faithful stationary state (ok- Let 
all the modular automorphism groups of (ok, k = 1 ..... r, be assumed to com- 
mute with the semigroup. Then, there exists at least one stationary state of 
the semigroup in the commutant  {(or ,-.., (or}'. A faithful state (o e {~ ..... car}' 
is stationary under the semigroup map, iff 

log (o e ~'~min(O)) ~ #Xm; min a((o, X) = a((o, Xm) ~ (24) 
L ) 

where a(p, X) is defined for a fixed faithful state p e {(ol ,..-, (or}' and an 
X 6 N ' ( ~ )  by 

a(p, X) =- L qk(P; X -- log (Ok, X -- log (Ok) (25) 
k = l  

in which qk(P; X, Y) is given by (22) with V~ = l~k), (O = (Ok, and hence 

a(p, log p ) =  L tr(P[(Ok) (26) 
k=l  

ProoL Suppose that a semigroup {A,; 0 ~ t < at}satisfies the hypothesis 
of the theorem, i.e. (besides the dynamical structure and finiteness), 

= ArEnas, k = 1 ..... r 

where E~  = (O~"(Ok i' (the modular automorphism of  (Ok) and Lk,(Ok = O. 
It then follows that the commutant  {cot .... , car}' is stable under the semigroup 
maps A t and A,, ,  i.e., 

At,  At ,{(Ol ..... (Or}' C {(-D1 , ' " ,  (or}t 

Since {(o~ ..... (Or}' is compact and A, is contractive, the Markov-Kakutani  
fixed-point theorem {~a) ensures the existence of  a stationary state in 
{(O~ ,-.., (Or}'. (A sufficient condition of its uniqueness and faithfulness, viz. 
{V~}' = C1, has been pointed out. t3~ Let us now proceed to the variational 
principle of  the theorem. 
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Since the variation function a(p, X) with a fixed p (a faithful state belong- 
ing to {o91 ..... cot}' ) is a positive, inhomogeneous quadratic form of X e N ' ( ~ )  
by the definition of q(p; X, Y) in (22), it can be represented as 

�89 X) = ~(X, ApX) - Re(Fo, X) + const 

where the scalar product  (X, Y) is defined by Tr X* I1, and the operator Ap 
and the vector Fp, both depending on p, are of  the form 

Aa = i Ago, F o = ~ A~plogcok (27) 
k = l  k = l  

By virtue of  the symmetries (i) and (ii) in Lemma 4, (X, Ap Y) is real for self- 
adjoint elements X~ Y e ~ ( ] f )  and Ako is symmetric, i.e., (X, AkpY)= 
(AkpX, Y) holds for all k. 

The problem of minimizing a bounded function of a vector X associated 
with a positive, symmetric bilinear form in a real vector space is elementary 
for the finite-dimensional case: 

�89 AX)  - (F, X) = min iff A X  = F 

Remark. The condition of strict positivity (or nonsingularity) of  the 
positive, symmetric linear operator A [i.e., N(A) - {X; AX = 0} = {0}] is not 
assumed in the above statement: more specifically, the finite minimum of the 
form �89 AX)  - (F, X) is attained by an X iff X satisfies the solvable linear 
equation A X =  F with F6 N(A) l,  where N(A) • denotes the orthogonal 
complement of the null space N(A) in the vector space. 

Therefore, in order to verify the equivalence between condition (24) and 
the stationariness condition for co, it is necessary and sufficient to show that 2 

r 

(AcoX)x=log,o = F~, iff L,co = ~ Lg,co = 0 
k = l  

Consider the first equality, into which the relations in (27) are inserted: 
r 

k;1 Ak'~ co -- log cok) = 0 

But this is shown to be  precisely identical with the second equality, if we 
compare the following two relations: 

qk(P ; X, Y) = Tr(AgpX) Y for all X, Y ~ ~(~( f )  

qk(P; X, Y)x=logp--logwk = - T r ( L k , p ) Y  for all Ye  ~)s(.~) 

2 In connection with the above remark, it is of interest to show that the operator Ap and the 
vector Fp given by (27) satisfy in fact the solvability condition Fp ~ N(Ap) • It can be seen from 
N(Ap) = (]~=1 N(Akp) and hence N(Ap~- = N(Alo ~- + ...+ N(Aro~, which is ensured by 
the fact that Ap is the sum of the positive, symmetric operators Aip,..., Arp. 
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The latter relation can be obtained by rewriting (22), applied to each 
k = 1,..., r, as 

qk(r x, ~) = 5 ~ Tr{[V~ k~, ok(o; lp)1-~ V(~k~*](o/-lr ~ 

+ L-~r ,~(~,, (o~- ~p)~ V(?~](o)/- 1r - 0 o j  } y dO 

and by using the representation of Lk, in (11) and the intertwining formulas 
(20) and (20') with p replaced by pco k- 1, p e {ok},. QED 

Remark. From the above analysis it can be observed that the identity 

qk(p;X-- logok,  Y)x_logp = -- ~ Tr(Lk,p)Y, V Y e ~ S ( ~ )  
k = l  k = l  

holds, and that by virtue of  this identity a convenient presentation of  the 
variational principle of  Theorem 1 may be expressed as 

(~xla(p, X)x=Jogp = ~ qk(P; log p -- log Ok, 6X) 
k = l  

= - T r ( L , p )  6X 

= 0, ~X = X - log p e N'~(~4f) (28) 

to first-order increment 6X, and 6(2)�89 X) >10. Since the first-order varia- 
tion is real for real (iX, its vanishing for arbitrary 6X ~ ~(t~) implies that 
L,p = O. 

The variational calculus of  the form (28) enables one to extend Theorem 1 
to a more general class of  dynamical semigroups, viz. to those whose genera- 
tor has a nonvanishing Hamiltonian part  and also a dissipative part  that satis- 
fies the same condition as in the theorem: 

T h e o r e m  2. Let L = L (h) + L (a) be the generator of  a completely posi- 
tive, identity-preserving dynamical semigroup defined on N(JF), dim ~ < o% 
with L (h) = i[H, .] and L (d) of  the same decomposed form as in Theorem 1. 
Let all the modular  automorphism groups of o k, k = 1 ..... r, be assumed to 
commute with the semigroup. A faithful state co ~ {o~ ..... 0#}' is stationary 
under the semigroup map iff 

log o s ~ m i n ( O )  ~ tXrn; min (Tr 2i[H, o]X + a(o, X)) = a(o, X,,)~ (29) 
J 

where a(p, X) is the same function as defined in Theorem 1. 

Proof. The minimization of  Tr 2i[H, o]X + a(o, X) on the right-hand 
side of  (29) and its identification with a(o,  X,,) at X m = log co is performed 
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according to the variational calculus (28): 

C~x(Tr i[H, co]X + �89 X))x=Jog ~ = Tr( i [H,  co] - ~d) L ,  co) ~X 

= 0, cSX = X - log co ~ ~s(~c) 

which is satisfied iff - i [ H ,  co] + (a) . L ,  ~, = L,co = 0, and 

gxZ>(Tr i[H, co]X + �89 X)) = <~<2)�89 X) >/0 QED 

5. APPLICATION TO LEBOWITZ-TYPE OPEN SYSTEMS 
WITH SEVERAL T H E R M A L  RESERVOIRS 

From a mathematical point of  view, the Lebowitz model ~2'41 can be 
looked upon as a special example of  our Theorem. Namely, every COu, the 
stationary state of  the dissipative generator L k, k = 1 ..... r, is given by the 
canonical equilibrium state with temperature f l i t  and a common 
Hamiltonian H ~ ~s(gf) ,  i.e., 

( ,ok = Z k  le -  ~kI~, Z k = Tr e -  ~k~ 

Clearly, all the automorphism groups {~2~,}, k = 1 ..... r, coincide and the 
commutant  {co x,..., cot}' reduces to {H}'. The Hamiltonian H that arises in 
the Hamiltonian part  L (h) = i[/~, .] may be different from H b u t  s t i l l / t  ~ {H}' 
(this is actually the case in the explicit construction of the generator by the 
weak coupling limit theory, where the original Hamiltonian H admits a shift 
AH, [AM, HI = 0 (1'2'6)). Thus our Theorem 2 may apply (actually it reduces 
to Theorem 1). 

r C o r o l l a r y .  Let L = i [ / t ,  "] + ~k= 1 Lk be the generator of a dynamical 
semigroup which represents the Lebowitz model, where Lk, a dissipative 
generator in Theorem 1, satisfies detailed balance wrt cok = Z [  le-pkH, 
k = 1 .... , r. The stationary state co of the semigroup (which is stationary of 
both generators L (h) and L (d), though L may not be normal) is characterized by 

log co e X~; min a(o~, X) = a(co, X~) , a(co, log co) = ~ f l k -d t  (30) 

where dQk/dt = -  - T r  co(Lk H) represents the heat flow from the system into 
the kth reservoir: the minimal value is identified with the thermodynamic 
entropy production. 

6. T H E R M O D Y N A M I C  STABILITY A G A I N S T  FLUCTUATIONS 

The positive quadratic form q(p; X, X) defined by the expression (22) 
can be identified with the coefficient of  22 of the power series expansion in 2 
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of the function 

Z(p, X; 2) = Tr exp[log pco- 1 § 2S(X)], p ~ {co}' 

where 

s(x)  = ~ {Ev~, x3o~ 1/2 + ([v~, x]col/2) *} 
v 

{ V~} satisfying condition (10). The function Z(p, X; 2) is convex with respect 
to X ~ ~ ( ~ ) .  Also, it is concave with respect to faithful states p ~ Y-+ (~r 
according to a theorem of Lieb's. ~ 11 ) Hence q(p; X, X) has the same properties 
[the concavity of q(p; X, X) wrt p is a consequence of  the Wigner-Yanase- 
Dyson conjecture, the validity of which was shown to be equivalent to that 
of Z(p, X; 2) by Lieb]. We infer that physically it represents a measure of  
fluctuations which influence a state p driven arbitrarily from the equilibrium 
state co. In terms of  this, the entropy production associated with p relative 
09 is given by 

1 F~ 2 1 
o'(plco) = ~ L ~  Z(p, X - log co; k) x = Jog p, ~ = 0 

We note that Spohn's variation principle selects those p that satisfy 

o(plco) = rain ~r(p'lco) =- 0 
p' ~ J + ( ~ t ~  Tr  p'  = 1 

The set of the solutions of this variation problem includes the set of all the 
stationary solutions L.p  = 0, p ~ 3--(Yg), with 

L, -l Z = 2 ~ ( I v . - v ~ * ]  + rye . ,  v ~ , ] )  

but in general the latter set is a proper subset of the former such that 

{p ~ Y + ( ~ ) ;  L . p  = 0} ~ {p ~ j + ( ~ ) ;  o(Plco) = 0} 

(Corollary 4 of Ref. 1). On the other hand, our variational principle selects 
precisely every stationary solution of the above L . :  It selects those p that 
satisfy Xmi,(p) = log p, where Xmi,(p) is any solution of the minimum problem 

where 

Z(2)(p ,  Xmin(P) - -  log co) = rain Zt2)(p, X - log co) = 0 

1[ 2 ] 
z~2~(p, x)  = ~ -SZ z(p, x; ,t) ~=o 

The additional condition that such a minimum be at X = log p imposes a 
requirement on p that is the stationariness condition L.p  = O. 
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The variational technique of the second type was proposed by Prigogine 
under the name of"local  potential," ~14) to which our solution of the problem 
of characterizing the stationary state in a class of quantum dynamical semi- 
groups conforms in its spirit. Its physical motivation, stability againstfluctua- 
tions, was discussed in Ref. 15. We hope to find a more systematic foundation 
of the variational principle of this kind (cf. Ref. 16). 
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